Warm-Up

CST/CAHSEE: Algebra

What is the solution for this equation?

$$|2x - 3| = 5$$

A. $x = -4$ or $x = 4$
B. $x = -4$ or $x = 3$
C. $x = -1$ or $x = 4$
D. $x = -1$ or $x = 3$

Review: Algebra

What is the solution for this equation?

$$|x + 10| = 12$$

- Show two ways to solve this equation.

Current: Algebra

Absolute Value is defined as:

A. A number that is always positive.
B. A number that is always negative.
C. A number’s distance from zero.
D. A number’s value no matter what.

Other: Algebra

What is the solution of the system graphed below?

A. $(-2, 3)$
B. $(2, 3)$
C. $(3, 2)$
D. No Solution

- Write the equation of each line.
- Which answer choices could you eliminate immediately and why?

- True or False: An absolute value equation always has two solutions. Explain or provide an example.
Warm-Up Solutions

<table>
<thead>
<tr>
<th>CST/CAHSEE: Algebra 1</th>
<th>Review: Algebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>[</td>
<td>2x - 3</td>
</tr>
<tr>
<td>2x - 3 = 5</td>
<td>x + 10 = 12</td>
</tr>
<tr>
<td>2x - 3 + 3 = 5 + 3</td>
<td>x + 10 - 10 = 12 - 10</td>
</tr>
<tr>
<td>2x = 8</td>
<td>x = 2</td>
</tr>
<tr>
<td>[\frac{2x}{2} = \frac{8}{2}]</td>
<td>[\frac{2x}{2} = \frac{-2}{2}]</td>
</tr>
<tr>
<td>x = 4</td>
<td>x = -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current: Algebra</th>
</tr>
</thead>
</table>

Answer Choice C: Absolute Value is defined as a number’s distance from zero.

False: An absolute value equation has only one answer when the absolute value expression is equal to zero.

Example: \[|3x - 12| = 0 \]

The only value of \(x \) that satisfies this equation is \(x = 4 \).

Similarly, an absolute value expression that is equal to a negative number has no solution. A number’s distance form zero cannot be negative.

Example: \[|3x - 12| = -5 \]

<table>
<thead>
<tr>
<th>Other: Algebra</th>
</tr>
</thead>
</table>

Answer Choice C: The solution of the system is the point of intersection of the two lines. That point is \((3, 2) \).

We may immediately eliminate answer choices A and D. The ordered pair listed in Choice A is in Quadrant II and our point of intersection is clearly in Quadrant I. Answer Choice D states that there is no solution, which would indicate a system of parallel lines. Our lines are clearly intersecting.

Equations:

\[y = 3 \]
\[y = 2x + 8 \]
All About Absolute Value Functions

Graphing Absolute Value Functions:

Graph \(y = |x| \). We will call this the “mother function” for absolute value functions.

Graph each function. Explain how it compares to the mother function.

1) \(y = |x| + 3 \)

The graph is translated up 3 units.

2) \(y = |x| - 2 \)

The graph is translated down 2 units.

3) \(y = |x + 4| \)

The graph is translated left 4 units.

4) \(y = |x - 1| \)

The graph is translated right 1 unit.
5) \(y = |x + 3| - 4 \)

The graph is translated left 3 units and down 4 units.

Summarize the function behavior you observed from the previous examples:

- \(y = |x + a| \) translates left \(a \) units
- \(y = |x - a| \) translates right \(a \) units
- \(y = |x| + b \) translates up \(b \) units
- \(y = |x| - b \) translates down \(b \) units

Explain how the graph for each of the following functions compares to the mother function. Do this first without graphing, then graph to check your answer.

6) \(y = |x + 2| \)
 The graph is translated left 2 units.

7) \(y = |x| - 4 \)
 The graph is translated down 4 units.

8) \(y = |x - 5| - 2 \)
 The graph is translated right 5 units and down 2 units.

NOTE: Stop here and debrief warm-up, CST and review items.
Solving Absolute Value Equations in One Variable:
Any equation in one variable can be rewritten as a system of two equations in two variables. We will explore solving absolute value equations by rewriting them as systems of equations.

Examples:

9) Solve $|x| = 3$

Rewrite as a system of equations:

$y = |x|$

$y = 3$

Graph to find the solutions for the system of equations:

The points of intersection are $(3, 3)$ and $(-3, 3)$.
The solutions to $|x| = 3$ are the x coordinates of the points of intersection.
Solutions: $x = -3, \ x = 3$

10) Solve $|x + 2| = 5$

Rewrite as a system of equations:

$y = |x + 2|$

$y = 5$

Graph to find the solutions for the system of equations:

The points of intersection are $(3, 5)$ and $(-7, 5)$.
The solutions to $|x + 2| = 5$ are the x coordinates of the points of intersection.
Solutions: $x = -7, \ x = 3$
11) **You Try:**

Solve \(|x - 3| = 2\)

Rewrite as a system of equations:

\[
\begin{align*}
y &= |x - 3| \\
y &= 2
\end{align*}
\]

Graph to find the solutions for the system of equations:

The points of intersection are (5, 2) and (1, 2).

The solutions to \(|x - 3| = 2\) are the \(x\) coordinates of the points of intersection.

Solutions: \(x = 1\), \(x = 5\)

This method can be extended to solve absolute value inequalities as well:

12) Our graph from example 9 showed us the solutions for \(|x| = 3\). It also shows the solutions to \(|x| < 3\) and \(|x| > 3\)

Solutions for \(|x| = 3\)

Solutions for \(|x| < 3\)

Solutions for \(|x| > 3\)
13) Use the graph from example 10 to find the solutions for $|x+2| \leq 5$ and $|x+2| \geq 5$

![Graph showing solutions for $|x+2|=5$, $|x+2| \leq 5$, and $|x+2| \geq 5$.]

Solutions for $|x+2|=5$ → $x=-7$ or $x=3$

Solutions for $|x+2| \leq 5$ → $-7 \leq x \leq 3$

Solutions for $|x+2| \geq 5$ → $x \leq -7$ or $x \geq 3$

14) **You Try:** Use your graph from example 11 to solve $|x-3| \geq 2$.

![Graph showing solutions for $|x-3|=2$, $|x-3| \leq 2$, and $|x-3| \geq 2$.]

Solutions for $|x-3|=2$ → $x=1$ or $x=5$

Solutions for $|x-3| \leq 2$ → $1 \leq x \leq 5$

Solutions for $|x-3| \geq 2$ → $x \leq 1$ or $x \geq 5$

The solutions for $|x-3| \geq 2$ are $x \leq 1$ or $x \geq 5$.
Part 1: The Mother Function
Graph the function below. Describe the graph. Write a sentence explaining why it takes the shape it does.

\[y = |x| \]

Part 2: Related Functions
Graph each function. Explain how it compares to the graph of the mother function.

1. \[y = |x| + 3 \]

2. \[y = |x| - 2 \]
Summarize the function behavior you observed from the previous examples.

y = |*x* + *a*|: ______________________________

y = |*x* − *a*|: ______________________________

y = |*x* + *b*|: ______________________________

y = |*x* − *b*|: ______________________________
Part 3: Predictions
Predict how the graph for each of the following functions compares to the mother function. Do this first without graphing; use your transparency to show your prediction to a neighbor. Then, graph to check your answer.

6. \(y = x + 2 \)
 Prediction:

7. \(y = |x| - 4 \)
 Prediction:

8. \(y = |x - 5| - 2 \)
 Prediction:
Part 4: Solving Absolute Value Equations as a System of Equations
Any equation in one variable can be written as a system of equations in two variables.
Solve the equations by re-writing each as a system. Graph to solve. (Use transparencies to predict first!)

9. Solve: \(|x| = 3\)

10. Solve: \(|x + 2| = 5\)

11. Solve: \(|x - 3| = 2\)
Part 5: Extensions
This method may also be used to solve absolute value inequalities.

| | Solve: $|x| < 3$ and $|x| > 3$ |
|---|--------------------------------|
| 12. | ![Graph of $|x| < 3$ and $|x| > 3$] |

| | Solve: $|x + 2| \leq 5$ and $|x + 2| \geq 5$ |
|---|---|
| 13. | ![Graph of $|x + 2| \leq 5$ and $|x + 2| \geq 5$] |

| | Solve: $|x - 3| \leq 2$ and $|x - 3| \geq 2$ |
|---|---|
| 14. | ![Graph of $|x - 3| \leq 2$ and $|x - 3| \geq 2$] |
Backline Masters: Photocopy onto transparencies and cut out. Each student should be given one of each.

| Mother Function: $y = |x|$ | Line: $y = x$ |
|---------------------------|-------------|
| ![Graph of y = |x|] | ![Graph of y = x] |
| ![Graph of y = |x|] | ![Graph of y = x] |
| ![Graph of y = |x|] | ![Graph of y = x] |
| ![Graph of y = |x|] | ![Graph of y = x] |
| ![Graph of y = |x|] | ![Graph of y = x] |