Date		
W	arm-Up	
CST: #20 Grade 5	Review:	
11.3×2.7	Find the area. 6.4 m	
	.2 m	
Use three different strategies to find the product.	What common mistakes might students make?	
Current:	Other:	
Find the circumference of a circle with a		
radius of .8 cm. Use 3.14 as an estimate for π .		
Today's Objective/Standards: 5N	IS2.1	

Multiplying Decimals

Warm-Up:

	<u>CST: #2</u>	<u>0</u>			Review
	<u>Area Model</u> 10 + 1 + .3			Partial Products 11.3	$A = b \times h$ = 6.4 m × .2 m = 6.4 × m × 2 × m
2	20	2	6	$\frac{\times 2.7}{21}$	$= 6.4 \times .2 \times m \times m$
+			.0	.7	$= 1.28 \mathrm{m}^2$
.7	7.0	.7	.21	.6	
=	27.0 = 30.51	2.7	.81	2. + 20.	
	Tradition	<u>nal</u>		30.51	

11.3	1
× 2.7	+1
791	2 decimal places
+226	
30.51	

Current

$C = 2\pi r$	r = .8cm
C = 2(3.14).8cm	
$C = 6.28 \times .8$ cm	
C = 5.024cm	

Lesson:

Review: Students read decimal values the same way you would read fractions. (It's important for students to be able to say decimals as improper fractions as well as mixed numbers!)

1) 12 "twelve ones"	2) 1.2 "twelve tenths"	3) .12 "1	twelve hundredths"
$=\frac{12}{1}$	$=\frac{12}{10}$	$=\frac{12}{100}$	
ex1) .2•.3 $\frac{2}{10} \cdot \frac{3}{10}$ = .0 6 $=\frac{6}{100}$	"tenths times tenths equals hundredths"	$ex2) 1.2 \bullet 1.2$ $= 1.4 4$	$\frac{\frac{12}{10} \cdot \frac{12}{10}}{= \frac{144}{100}}$
		Say the decimyou say the fr digit of the nuplace value in denominator.	hal the same way action. The last interator is in the idicated by the
yt1) .4•.2 = . <u>0</u> <u>8</u> $=\frac{4}{10} \cdot \frac{2}{10}$ = $\frac{8}{100}$	yt2) =	$1.1 \bullet 1.3$	$\frac{\frac{11}{10} \cdot \frac{13}{10}}{\frac{143}{100}}$
ex3) $6 \bullet .4$ = 2. <u>4</u> $= 2. \underline{4}$ $= \frac{24}{10} = \frac{10}{10} = 10$	What can you by about the ex4) $2.4 \bullet .8$ coduct before bu multiply e factors? $=1.92$ alk to your eighbor for 10 econds." [it is bing to be nths]	$\frac{24}{10} \bullet \frac{8}{10} \text{wyo}_{abb}$ $= \frac{192}{100} \text{stu}_{char}$	Vhat do24u know $\times 8$ but the $\times 8$ boduct?" 32 udents 32 bral $+160$ 192
yt3) $.8 \bullet 8$ = 6.4 $= \frac{4}{10} = \frac{64}{10}$	yt4) .12•5.8 = . <u>6</u> 96	$\begin{vmatrix} \frac{12}{100} \bullet \frac{58}{10} \\ = \frac{696}{1000} \end{vmatrix}$	$ \begin{array}{r} 12 \\ \times 58 \\ \hline 16 \\ 80 \\ 100 \\ \times 500 \end{array} $
			$\frac{+500}{696}$
			570

Lesson continued:

Area Models / Partial Products:

ex5) $4.1 \bullet 2.3$	4. + .1	4.1
= 9. 4 3	2. 8 .2	× 2.3
	+	.03
	.3 1.2 .03	.2
		1.2
	9.2 + .23	+ 8.
	= 9.43	9.43
		I
yt5) 2.4 ●.48	2 + .4	24
=1.1 5 2	.4 .8 .16	× .48
	+	.032
	.08 .16 .032	.16
		.16
	.96 + .192	+ .8
	= 1.152	1.152

*Once students get the idea that decimals don't move and they can figure out the type of value of the product before they even begin multiplying, they can multiply the values as whole numbers, because the values would be whole numbers if they were written as fractions.

Extra Practice:

1) $0.72 \bullet 8.4$ 2) $1.22 \bullet 0.55$	3) 48.2•16.2	4) .055•4.36
--	--------------	--------------